Classroom Resources: States of Matter

Filter by:

  1. Sort by:

1 – 25 of 90 Classroom Resources

  • Chemistry Basics, Identifying an Unknown, Solutions, Solubility, Melting Point, Phase Changes, Acids & Bases, pH, Strong vs Weak, Observations, Molecular Motion | High School

    Access is an AACT member benefit. Activity: Simulation Activity: Identifying Unknowns with Safety Data Sheets Mark as Favorite (6 Favorites)

    In this activity, students will use a simulation to learn about some of the sections of a safety data sheet (SDS) and how the information on SDSs can be used not only for safety purposes but also for identifying unknowns. Specifically, students will use “Section 9: Physical and Chemical Properties” to distinguish between two or three substances with similar appearances in a variety of lab-based scenarios. Particle diagrams are also included to help students visualize the substances’ behavior on a particulate level.

  • Chemistry Basics, Identifying an Unknown, Solutions, Solubility, Melting Point, Phase Changes | High School

    Simulation: Safety Data Sheets Mark as Favorite (6 Favorites)

    Students learn about sections of a safety data sheet (SDS) and how the information can be used for safety purposes and for identifying unknowns. They will use the Physical and Chemical Properties section and particle diagrams to distinguish between substances with similar appearances in a variety of lab-based scenarios.

  • Saturated vs. Unsaturated, Molecular Structure , Molecular Structure, Covalent Bonding, Lewis Structures, Interdisciplinary, Dimensional Analysis, Intermolecular Forces, Melting Point | High School

    Access is an AACT member benefit. Lesson Plan: Dietary Fats Mark as Favorite (5 Favorites)

    In this lesson, students will learn about the chemistry of dietary fats in the food they eat. They will calculate the number of calories coming from fats, carbohydrates, and proteins based on a food label before completing a guided activity focused on investigating the chemical structures of different types of fats. Students will then engage in a literacy component where they will use an article about the biological role of various types of dietary fats and foods to answer a series of questions.

  • Chemistry Basics, Physical Properties, Physical Change, Observations, Identifying an Unknown, Lab Safety, Molecules & Bonding, Covalent Bonding, Ionic Bonding, Intermolecular Forces, Molecular Motion, Solutions, Conductivity, Melting Point, Intermolecular Forces, Molecular Motion | High School

    Access is an AACT member benefit. Activity: Animation Activity: Physical Properties and Particle Interaction Mark as Favorite (10 Favorites)

    In this activity, students will view an animation that explores the relationship between physical properties and particle-level interactions. Particle diagrams of common household substances are used to illustrate that forces of attraction influence melting points. Similarly, particle diagrams of the same substances dissolved in water are used to compare their conductivity in solution.

  • Concentration, Precipitate, Molarity, Molality, Conductivity, Colligative Properties, Boiling Point Elevation, Freezing Point Depression, Distillation, Culminating Project, Graphing, Accuracy, Error Analysis, Interdisciplinary, Mixtures, pH, Buffers, Boiling Point, Freezing Point, Phase Changes | High School

    Access is an AACT member benefit. Lesson Plan: Investigating Sea Water Mark as Favorite (21 Favorites)

    In this lesson, students will consider their water footprint and means to obtain fresh water from seawater using a solar still. To understand the differences between fresh water and seawater, students will determine the composition of artificial seawater by using qualitative analysis to test for different ions in solution and calculate the molarity of different salts used in the recipe. Students will observe the effects of solutes in aqueous solutions by measuring conductivity and the freezing and boiling points of seawater and deionized water and determine total dissolved solids. In addition, students explore the buffering ability of seawater and the effect of carbon dioxide on its pH.

  • Colligative Properties, Boiling Point Elevation, Freezing Point Depression, Concentration, Solute & Solvent, Boiling Point, Freezing Point, Phase Changes, Molecular Motion, Graphing, Physical Properties, Heat, Temperature | High School

    Simulation: Colligative Properties Mark as Favorite (23 Favorites)

    In this simulation, students will investigate the effects of different solutes, and different amounts of those solutes, on the boiling point and freezing point of a solution. Students will see particle-level animations of boiling and freezing with different types and amounts of solutes, as well as graphical representations of the results of each trial.

  • Colligative Properties, Boiling Point Elevation, Freezing Point Depression, Concentration, Solute & Solvent, Boiling Point, Freezing Point, Phase Changes, Molecular Motion, Graphing, Physical Properties, Heat, Temperature | Middle School, High School

    Access is an AACT member benefit. Activity: Simulation Activity: The Effect of Solutes on Boiling and Freezing Point Mark as Favorite (29 Favorites)

    In this activity, students will use a colligative properties simulation to investigate the effects of different solutes, and different amounts of those solutes, on the boiling point and freezing point of a solution. Students will see particle-level animations of boiling and freezing with different types and amounts of solutes, as well as graphical representations of the results of each trial.

  • Heat, Boiling Point, History | High School

    Lesson Plan: Norbert Rillieux, Thermodynamics and Chemical Engineering Mark as Favorite (13 Favorites)

    In this lesson, students will learn about thermodynamics through a historical story of a budding Black chemical engineer named Norbert Rillieux. He is credited with creating the process for isolating sugar crystals from sugarcane because of his keen understanding of thermodynamics. There are a series of activities to help promote literacy in the science classroom related to the reading. This lesson could be easily used as plans for a substitute teacher, as most of the activities are self-guided. Rillieux’s story is interesting from a diversity standpoint. He was a free biracial scientist living in the South during pre-Civil War times. This story provides an opportunity to discuss diversity, equity, and inclusion in the chemistry classroom.

  • Phase Changes, Intermolecular Forces, Boiling Point | High School

    Access is an AACT member benefit. Demonstration: Boiling Water & Liquid Nitrogen Mark as Favorite (2 Favorites)

    In this demonstration, students will observe boiling water added to liquid nitrogen. This causes the liquid nitrogen to quickly evaporate and appear cloud-like as water vapor in the air condenses on the cold gaseous nitrogen.

  • Phase Changes, Molecular Motion, Intermolecular Forces, Heat of Combustion, Temperature, Exothermic & Endothermic | High School

    Access is an AACT member benefit. Lab: Investigating Condensation Mark as Favorite (5 Favorites)

    In this lab, students will explore the phase change of condensation and determine whether this process is endothermic or exothermic. Students will then investigate how water vapor condenses, what effect surrounding temperature has on the rate of condensation, and what is happening to the molecules when they condense.

  • Freezing Point Depression, Heat, Phase Changes, Molecular Motion | Middle School, High School

    Access is an AACT member benefit. Lab: Sweet, Salty and Cold as Ice Mark as Favorite (25 Favorites)

    In this lab, students conduct a micro-scale investigation to explore how various solutes affect the freezing point of water. Because of the small volume of liquid used, results are visible within minutes. Students observe what happens to the liquids as they are cooled and use their observations to infer what is going on at the particle level. They will use the results to explain the familiar phenomena of why we salt our roads and sidewalks in the winter and why freshwater lakes and ponds freeze over more easily than saltwater oceans in the winter.

  • Introduction, Lab Safety, Chemical Properties, Physical Properties, Chemical Change, Physical Change, History, Separating Mixtures, Elements, Mixtures, Density, Measurements, SI Units, Significant Figures, Dimensional Analysis, Scientific Notation, Accuracy, Molecular Motion, Phase Changes | High School

    Access is an AACT member benefit. Lesson Plan: The Chemistry Basics and Measurement Quick Start Unit Plan Mark as Favorite (46 Favorites)

    This Quick Start Unit Plan includes all the materials that a teacher will need for the first 10 class meetings of the school year. Each day is outlined with teacher notes, and includes slide presentations as well as directions for demonstrations, activities and labs to use. The fundamental topics covered in the 10 days of lessons are: laboratory safety, laboratory equipment, experimental design, classification of matter, chemical properties, physical properties, chemical change, physical change, phase changes, separation techniques, dimensional analysis, unit conversions, factor label method, accuracy, precision, significant figures, and percent error calculations. This Quick Start Unit plan aims to help students to build a foundation of understanding, and master important topics before moving deeper into the chemistry curriculum.

  • Heat, Specific Heat, Phase Changes | Elementary School, Middle School

    Access is an AACT member benefit. Lab: The Insulation Investigation Mark as Favorite (3 Favorites)

    In this lab, students will think critically about the properties, structure and function of materials as they design and build a device used to insulate an ice cube to prevent it from melting.

  • Heat of Vaporization , Boiling Point, Intermolecular Forces, Phase Changes, Heating Curve, Heat of Combustion, Temperature, Specific Heat, Observations, Chemical Change, Physical Change | Middle School, High School

    Access is an AACT member benefit. Demonstration: Cooking an Egg in Chemistry Class Mark as Favorite (6 Favorites)

    In this demonstration, students will observe the very high latent heat of vaporization for water by boiling water over a Bunsen burner in a paper cup to cook a boiled egg. The discussion can be extended to incorporate intermolecular forces to explain the unusually high boiling point of water, as well as heat of vaporization and specific heat capacity.

  • Heat, Specific Heat, Phase Changes, Intermolecular Forces | High School

    Access is an AACT member benefit. Activity: "It's a Phase" Puzzles Mark as Favorite (1 Favorite)

    In this activity, students will complete either a crossword puzzle or a word search puzzle for common vocabulary terms related to the topics of phase changes and heat transfer. This activity provides an opportunity for students to increase their familiarity with the terms that they will be expected to use when learning about thermochemistry.

  • Physical Properties, Covalent Bonding, Electronegativity, Polarity, Molecular Geometry, Intermolecular Forces, Solubility | Middle School, High School

    Access is an AACT member benefit. Activity: The Chemistry of Water Video Questions Mark as Favorite (43 Favorites)

    In this lesson, students will watch a video and answer questions about how the molecular geometry and polarity of water give rise to many of its unusual physical properties, including its relatively high boiling point and its ability to dissolve some substances but not others.

  • Ionic Bonding, Naming Compounds, Molecular Formula, Ions, Ionic Radius, Solubility, Melting Point, Physical Properties | High School

    Access is an AACT member benefit. Activity: My Name is Bond, Ionic Bond Mark as Favorite (68 Favorites)

    In this lesson, students will demonstrate their knowledge of ionic bond strength using a “brackets” activity. Pairs of students start the activity playing a game of “Ionic Compound War” to build eight compounds. Then then transfer the compounds to a “bracket” and use their knowledge of ionic bonding, along with a solubility chart, to predict the strongest and weakest bond between four pairs of ionic substances.

  • Ionic Bonding, Naming Compounds, Molecular Formula, Ions, Ionic Radius, Solubility, Melting Point, Physical Properties | High School

    Access is an AACT member benefit. Activity: Ionic Bonding Brackets Mark as Favorite (55 Favorites)

    In this lesson, students will demonstrate their knowledge of ionic bond strength and its relationship to the properties of melting point and solubility using a “brackets” activity. After analyzing the ionic charge and radius to predict the strongest and weakest bond between four pairs of ionic substances, they will then determine which will be the least soluble.

  • Phase Changes, Melting Point, Heat | Elementary School

    Access is an AACT member benefit. Lesson Plan: Chocolate Changes Mark as Favorite (0 Favorites)

    In this lesson, students will review what they know about the three states of matter (solid, liquid, and gas). They will perform a word sort about states of matter and discuss how substances can exist in more than one state of matter. Following this they will contribute to a KWL (Know, Want to know, Learned) chart. The teacher will conclude the lesson with a demonstration using chocolate.

  • Intermolecular Forces, Polarity, Molecular Geometry, Melting Point, Boiling Point | High School

    Access is an AACT member benefit. Activity: Examining the Strength of Intermolecular Forces of Attraction Mark as Favorite (27 Favorites)

    In this activity, students will be able to understand the strength of the attractions of the three intermolecular forces (IMFs) and use this information to help identify physical properties of molecules (such as melting point, boiling point or states of matter).

  • Heat, Law of Conservation of Energy, Specific Heat, Temperature, Calorimetry, Phase Changes, Boiling Point, Melting Point, Heating Curve, Intermolecular Forces, Molecular Motion, Phase Diagram | High School

    Lesson Plan: Phase Changes and Heat Transfer Unit Plan Mark as Favorite (22 Favorites)

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the Phase Changes and Heat Transfer to your students.

  • Half Lives, Radioactive Isotopes, Radiation, Phase Changes | High School

    Access is an AACT member benefit. Activity: Radioactive Dating: The Demise of Frosty Mark as Favorite (33 Favorites)

    In this activity students will investigate the idea that carbon dating is based on gathering evidence in the present and extrapolating it to the past. Students will use a simple graph to extrapolate data to its starting point and then pool the data to make a graph that simulates half-life. Students will be introduced to solving mathematical problems that involve half-life.

  • Intermolecular Forces, Phase Changes | High School

    Access is an AACT member benefit. Activity: The Behavior of Solids and Liquids Mark as Favorite (29 Favorites)

    In this activity, students will be able to explore and explain behaviors of liquids and solids based on the individual particles in the states of matter

  • Molecular Motion, Phase Changes | Middle School

    Access is an AACT member benefit. Activity: Atoms in Motion Mark as Favorite (17 Favorites)

    In this activity, students will explore how particles that make up matter are in constant motion. The students will use an online PhET simulation to compare the ways that atoms and molecules move in samples of solids, liquids, and gases. This activity will help students improve their understanding of the particle level.

  • Phase Changes, Molecular Motion | Middle School, High School

    Simulation: States of Matter and Phase Changes Mark as Favorite (101 Favorites)

    In this simulation, students will participate in a 10 question quiz. Some questions will challenge students to analyze data to identify the correct state of matter for a specific sample, and then connect the chosen state with an animated particle diagram. In addition, students will examine the behavior of particles in an animated sample as they undergo a phase change, and must correctly identify the change that occurs.

    Available Filters

    Subtopic
    Type