Classroom Resources: Atomic Structure

Filter by:

  1. Sort by:

51 – 69 of 69 Classroom Resources

  • Atomic Mass, Atomic Theory, Model of the Atom, Subatomic Particles, Periodic Table, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Dimitri Mendeleev Video Mark as Favorite (67 Favorites)

    This video tells the story of how Dimitri Mendeleev organized the periodic table, even leaving gaps to be filled in with elements that weren't yet discovered.

  • Atomic Mass, Subatomic Particles | High School, Middle School, Elementary School

    Access is an AACT member benefit. Video: History of the Periodic Table Video Mark as Favorite (121 Favorites)

    In this video, Sam Kean tells the story of the development of the periodic table. He also pays tribute to each of the major scientific contributors, including Dimitri Mendeleev, who made great discoveries through their efforts to best organize the elements.

  • Periodic Table, Elements, Introduction, History, Atoms, Electrons, Subatomic Particles | Middle School, Elementary School, High School

    Access is an AACT member benefit. Activity: Writing Your Name using Chemical Element Symbols Mark as Favorite (26 Favorites)

    In this activity, students will use their creativity to spell their name (first or middle name and their last name) using chemical symbols of elements on the periodic table. For example, you can spell Yvonne using the symbols for yttrium (Y), vanadium (V), oxygen (O), nitrogen (N), and neon (Ne).

  • Isotopes, Atomic Mass, Subatomic Particles, Experimental Design | High School

    Access is an AACT member benefit. Lab: Isotopes Make Cents Mark as Favorite (39 Favorites)

    In this lab, students use a sample of pennies to mimic how average atomic mass is calculated.

  • Molecular Formula, Ionic Bonding, Covalent Bonding, Molecular Geometry, Naming Compounds, Lewis Structures, Periodic Table, Valence Electrons, Lewis Dot Diagrams, Ions, Subatomic Particles | High School, Middle School

    Activity: Simulation Activity: Ionic and Covalent Bonding Mark as Favorite (114 Favorites)

    In this simulation, students investigate both ionic and covalent bonding. Students will have the opportunity to interact with many possible combinations of atoms and will be tasked with determining the type of bond and the number of atom needed to form each. The simulation visually differentiates between the transferring of electrons when forming an ionic compound and the sharing of electrons when forming a covalent compound so that students can have a complete understanding of each. Finally, students will become familiar with the molecular formula, as well as the naming system for each type of bond and geometric shape, when applicable.

  • Review, Subatomic Particles, Ions, Isotopes, Electrons, Atomic Mass, Lewis Dot Diagrams, Model of the Atom, Balancing Equations | High School, Middle School

    Access is an AACT member benefit. Activity: Tic-Tac-Toe Review Mark as Favorite (38 Favorites)

    In this activity students collaborate to complete tic-tac-toe review questions to prepare for a test on the atomic structure unit. The idea behind the activity is to give students choice and you can read more about the inspiration for the activity in the May issue of Chemistry Solutions.

  • Periodic Table, History, Physical Properties, Chemical Properties, Elements, Identifying an Unknown, Atoms, Atomic Radius, Ionic Radius, Ionization Energy, Electron Affinity, Valence Electrons, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Lesson Plan: The Periodic Table Unit Plan Mark as Favorite (72 Favorites)

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the Periodic Table to your students.

  • Periodic Table, History, Physical Properties, Chemical Properties, Atoms, Model of the Atom, Atomic Radius, Subatomic Particles, Electrons, Valence Electrons, Electron Configuration, Orbitals , Isotopes, Atomic Mass | High School, Middle School

    Activity: Ptable.com Investigations Mark as Favorite (152 Favorites)

    In this activity, students will use the online periodic table found at www.ptable.com to investigate a number of chemistry concepts. Students will use this online resource to explore information about the elements, including historical data, physical properties, periodic trends and more.

  • Electrostatic Forces, Subatomic Particles, Electrons, Electricity, Electrons, Graphing | High School

    Access is an AACT member benefit. Lab: Electromagnetic Forces in the Atom Mark as Favorite (2 Favorites)

    In this lab, students will better understand that opposite charges attract each other, and like charges repel.

  • Electron Affinity, Atomic Radius, Ionic Radius, Periodic Table, Ions, Atoms, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Access is an AACT member benefit. Activity: Periodic Trends II: Electron Affinity, Atomic Radius, & Ionic Radius Mark as Favorite (79 Favorites)

    In this simulation, students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Electrons, Subatomic Particles, Ions, Model of the Atom, Atoms | High School

    Access is an AACT member benefit. Activity: Periodic Trends I: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (166 Favorites)

    In this simulation, students will investigate several periodic trends, including atomic radius, ionization energy and ionic radius. Through the use of this simulation students will have the opportunity to examine atomic data as well as visually compare and interact with select elements from the periodic table.

  • Electricity, Energy & Thermodynamics, Law of Conservation of Energy, Anode, Cathode, Electron Transfer, Electrons, Subatomic Particles, Electrons | Middle School

    Access is an AACT member benefit. Lesson Plan: Battery Basics Mark as Favorite (11 Favorites)

    In this lesson students will explore the chemical reaction that occurs within a lead-acid car battery and the role of the battery within a car prior to creating their own batteries.

  • Atomic Theory, Model of the Atom, Subatomic Particles, Ions, Isotopes, Atoms, Atomic Mass | High School, Middle School

    Activity: Simulation Activity: Building an Atom Mark as Favorite (110 Favorites)

    In this simulation, students manipulate the number of protons, neutrons, and electrons in an element and determine how these effect the mass number, atomic number, and other properties of an atom.

  • Atoms, Subatomic Particles, Isotopes, Atomic Theory, History, Elements | Middle School, High School

    Access is an AACT member benefit. Activity: Atomic Structure RAFT Mark as Favorite (34 Favorites)

    In this activity, students choose from a number of activity options in order to best display their understanding of atomic structure. The RAFT model will be followed for this assignment, which means the students choose their assignment and may modify the assignment based on Role, Audience, Format, and Topic.

  • Emission Spectrum, Emission Spectrum, Electromagnetic Spectrum, Subatomic Particles, Electrons, Atoms, Atomic Theory, Model of the Atom | High School

    Lesson Plan: Modeling Energy in Chemistry: Energy and the Electron Mark as Favorite (64 Favorites)

    This activity is designed for students to build a scientific argument about the relationship between energy and spectral lines by exploring how light interacts with atoms. In the process, students will examine proposed models of the hydrogen atom and use collected data to analyze the proposed models. They will then select one of the models and write a scientific argument to support their choice. Students will then review additional data to support and/or refute their selection. Based on their analysis, students will revise their selected model and construct a new argument to support their revisions.  

  • Molecular Formula, Ionic Bonding, Covalent Bonding, Molecular Geometry, Naming Compounds, Lewis Structures, Periodic Table, Valence Electrons, Lewis Dot Diagrams, Ions, Subatomic Particles | High School, Middle School

    Simulation: Ionic & Covalent Bonding Mark as Favorite (160 Favorites)

    In the September 2016 simulation, students investigate both ionic and covalent bonding. Students will have the opportunity to interact with many possible combinations of atoms and will be tasked with determining the type of bond and the number of atom needed to form each. Students will become familiar with the molecular formula, as well as the naming system for each type of bond and geometric shape, when applicable.

  • Electron Affinity, Atomic Radius, Ionic Radius, Ions, Atoms, Periodic Table, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Simulation: Periodic Trends II: Electron Affinity, Atomic Radius & Ionic Radius Mark as Favorite (29 Favorites)

    The May 2016 simulation is a follow-up to the March 2016 simulation. Students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Atoms, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Simulation: Periodic Trends: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (97 Favorites)

    In this simulation for the March 2016 issue, students can investigate the periodic trends of atomic radius, ionization energy, and ionic radius. By choosing elements from the periodic table, atoms can be selected for a side by side comparison and analysis. Students can also attempt to ionize an atom by removing its valence electrons. Quantitative data is available for each periodic trend, and can be further examined in a graph.

  • Culminating Project, Review, Physical Properties, Chemical Properties, Periodic Table, History, Interdisciplinary, Electron Configuration, Subatomic Particles, Isotopes, Atomic Mass | High School, Middle School

    Access is an AACT member benefit. Project: 21st Century Elements Mark as Favorite (38 Favorites)

    In this project, students will learn the importance of the elements in our lives. The students will research one chosen element and create a website, a digital comic strip, or a video to explain the important properties of the element as well as why the element is so important to our lives.

Filtered By

Subtopics: Subatomic Particles

Clear All Filters

    Available Filters

    Subtopic
    Type